AIスロープの検出:技術と警鐘
AI生成コンテンツの検出に関する技術ガイド
AI生成コンテンツの増加により、新たな課題が生じています。それは、本物の人の書き方と「AIスロップ」(https://www.glukhov.org/ja/post/2025/12/ai-slop-detection/ “AIスロップ”)を区別することです。AIスロップとは、低品質で大量生産された合成テキストのことです。
AI生成コンテンツの検出に関する技術ガイド
AI生成コンテンツの増加により、新たな課題が生じています。それは、本物の人の書き方と「AIスロップ」(https://www.glukhov.org/ja/post/2025/12/ai-slop-detection/ “AIスロップ”)を区別することです。AIスロップとは、低品質で大量生産された合成テキストのことです。
ローカルLLMでCogneeをテストする - 実際の結果
CogneeはPythonフレームワークで、LLMを使用してドキュメントから知識グラフを構築するためのものです。 しかし、これは自社ホストされたモデルと互換性があるのでしょうか?
BAML と Instructor を使用した型安全な LLM 出力
LLM(大規模言語モデル)を本番環境で使用する際には、構造化された、型安全な出力を得ることが極めて重要です。
BAMLおよびInstructorという2つの人気のあるフレームワークは、この問題に対して異なるアプローチを取ります。
LLMを自社でホストするCogneeについての考察
最適なLLMの選定は、グラフ構築の品質、幻覚率、ハードウェアの制約をバランスよく考慮する必要があります。
Cogneeは、Ollama](https://www.glukhov.org/ja/post/2024/12/ollama-cheatsheet/ “Ollama cheatsheet”)を通じて32B以上の低幻覚モデルで優れたパフォーマンスを発揮しますが、軽量な構成では中規模のオプションも利用可能です。
ステップバイステップの手順によるハウツー
Ubuntu 24.04 に KVM をインストールするには、CPU の仮想化サポートを確認し、KVM/libvirt パッケージをインストールし、libvirtd サービスを有効にし、(オプションで)GUI 用の virt-manager をインストールします。
現代的なワークスペースでGoプロジェクトを効率的に整理しましょう
Goプロジェクトの管理を効果的に行うには、ワークスペースがコード、依存関係、およびビルド環境をどのように整理しているかを理解する必要があります。
Gitのコンテキストを瞬時に確認できるBashプロンプトのカスタマイズ
適切に設定された bashプロンプトでgitリポジトリ情報を表示 は、開発ワークフローを大幅に改善することができます。
パンくず構造と構造化データでSEOを向上させましょう
パンくずナビゲーションと適切な構造化データのマークアップを組み合わせたものは、ウェブサイトの検索可視性とユーザー体験を大幅に改善できる非常に効果的でありながらも、あまり活用されていないSEOの技術の一つです。
Linuxアプリケーション用のSnapとFlatpakの選択
ユニバーサルパッケージマネージャーは、Linuxソフトウェアの配布を革命的に変え、クロスディストリビューションの互換性を現実のものにしました。SnapとFlatpakは、依存関係の地獄とディストリビューションの断片化を解決するための主要なソリューションとして登場し、それぞれが独自の哲学を持っています。
スケーラビリティと明確性のためにGoプロジェクトを構成しましょう
Goプロジェクトの構成は、長期的な保守性、チームの協力、スケーラビリティにとって基本的な要素です。フレームワークが厳格なディレクトリ構造を強制するのとは異なり、Goは柔軟性を重視していますが、その自由にはプロジェクトの特定のニーズに応じたパターンを選択する責任が伴います。
テスト可能なコードのためにPythonでのDIパターン
依存性注入(DI)は、Pythonアプリケーションにおけるクリーンでテスト可能で保守可能なコードを促進する基本的な設計パターンです。
Ubuntuでネットワークの問題を解決した方法
新しいカーネルを自動インストールした後、Ubuntu 24.04でイーサネットネットワークが失われたという問題が発生しました。この面倒な問題は私にとって2度目だったので、同じ問題に直面している他の人々の助けになるよう、ここに解決策を記録しています。
AWS S3 への Hugo のデプロイを自動化する
AWS CLIを使用してHugo静的サイトをAWS S3にデプロイすることで、ウェブサイトをホストするための堅牢でスケーラブルなソリューションが提供されます。このガイドでは、初期設定から高度な自動化およびキャッシュ管理戦略まで、完全なデプロイメントプロセスをカバーしています。
テスト可能なGoコードのためのDIパターンをマスターする
依存性注入 (DI) は、Goアプリケーションにおいてクリーンでテスト可能で保守可能なコードを促進する基本的な設計パターンです。
必須のショートカットとマジックコマンド
Jupyter Notebookの生産性を飛躍的に向上させるために、データサイエンスおよび開発体験を変革するための必須のショートカット、マジックコマンド、ワークフローのヒントをご活用ください。
短い投稿ですが、価格を記録しておきます。
この異常なRAM価格の変動を理解し、より明確な見通しを持つために、まずは自分たちでオーストラリアのRAM価格を追跡しましょう。