DevOps

AI/MLオーケストレーション用のGoマイクロサービス

AI/MLオーケストレーション用のGoマイクロサービス

Goマイクロサービスを使用して堅牢なAI/MLパイプラインを構築しましょう

AIおよび機械学習(ML)ワークロードがますます複雑になるにつれて、強固なオーケストレーションシステムの必要性が高まっています。Goのシンプルさ、パフォーマンス、並行処理能力は、MLパイプラインのオーケストレーションレイヤーを構築する際に理想的な選択肢です。モデル自体がPythonで書かれている場合でも、Goは理想的な選択肢です。https://www.glukhov.org/ja/post/2025/11/go-microservices-for-ai-ml-orchestration-patterns/ “Go in ML orchestration pipelines”。

コンシューマーハードウェア上のAIインフラ

コンシューマーハードウェア上のAIインフラ

予算のハードウェアでオープンモデルを使用して企業向けAIを展開

AIの民主化はここにあります。 Llama 3、Mixtral、QwenなどのオープンソースLLMが、今やプロプライエタリモデルと同等の性能を発揮するようになり、チームは消費者ハードウェアを使用して強力なAIインフラストラクチャを構築できるようになりました。これにより、コストを削減しながらも、データプライバシーやデプロイメントに関する完全なコントロールを維持することが可能です。

KubernetesにおけるStatefulSetsと永続ストレージ

KubernetesにおけるStatefulSetsと永続ストレージ

順序付きスケーリングと永続的なデータを使用してステートフルなアプリを展開する

Kubernetes StatefulSets は、安定したアイデンティティ、永続的なストレージ、および順序付きデプロイメントパターンを必要とするステートフルなアプリケーションを管理するための最適なソリューションです。データベース、分散システム、キャッシュレイヤーなどに不可欠です。

データのセキュリティを確保するためのアーキテクチャパターン:静的状態、伝送中、および実行時

データのセキュリティを確保するためのアーキテクチャパターン:静的状態、伝送中、および実行時

完全なセキュリティガイド - 保存中のデータ、転送中のデータ、実行中のデータ

データが貴重な資産である現代において、その保護はこれまでになく重要性を増しています。情報が作成される瞬間から廃棄されるまで、その旅は常にリスクに満ちています。保存、転送、または積極的に使用されるデータに関わらず、それぞれに固有の課題と解決策があります。

「Strapi vs Directus vs Payload: ヘッドレスCMS比較」

「Strapi vs Directus vs Payload: ヘッドレスCMS比較」

ヘッドレスCMSの比較 - 機能、パフォーマンスおよびユースケース

正しい ヘッドレス CMS の選択は、コンテンツ管理戦略を成功させるか、失敗させるかを左右します。 開発者がコンテンツ駆動型アプリケーションを構築する方法に影響を与える3つのオープンソースソリューションを比較してみましょう。

GoでCobraとViperを使用したCLIアプリの構築

GoでCobraとViperを使用したCLIアプリの構築

GoでCobraとViperフレームワークを使用したCLI開発

コマンドラインインターフェース(CLI)アプリケーションは、開発者、システム管理者、DevOpsプロフェッショナルにとって不可欠なツールです。 Go言語でCLIを開発するための2つのライブラリが、CLI開発におけるGoの標準として広く採用されています:コマンド構造にはCobra、設定管理にはViper。