LLM

BAML vs Instructor : Sorties structurées des LLM

BAML vs Instructor : Sorties structurées des LLM

Sorties de LLM type-sûres avec BAML et Instructor

Lors de l’utilisation de grands modèles de langage en production, obtenir des sorties structurées et de type sûr est essentiel. Deux frameworks populaires - BAML et Instructor - adoptent des approches différentes pour résoudre ce problème.

Utiliser l'API de recherche web d'Ollama en Python

Utiliser l'API de recherche web d'Ollama en Python

Construisez des agents de recherche IA avec Python et Ollama

La bibliothèque Python d’Ollama inclut désormais des capacités natives de recherche web Ollama. Avec quelques lignes de code, vous pouvez enrichir vos modèles locaux de LLM avec des informations en temps réel provenant du web, réduisant ainsi les hallucinations et améliorant la précision.

Comparaison des magasins de vecteurs pour RAG

Comparaison des magasins de vecteurs pour RAG

Choisissez le bon DB vectoriel pour votre pile RAG

Le choix du bon stockage vectoriel peut faire la différence entre le succès et l’échec de votre application RAG en termes de performance, de coût et d’évolutivité. Cette comparaison approfondie couvre les options les plus populaires en 2024-2025.

Microservices Go pour l'orchestration AI/ML

Microservices Go pour l'orchestration AI/ML

Construisez des pipelines d'IA/ML solides avec des microservices Go

Alors que les charges de travail d’IA et de ML deviennent de plus en plus complexes, le besoin de systèmes d’orchestration robustes est devenu plus important que jamais. La simplicité, la performance et la concurrence de Go en font un choix idéal pour construire la couche d’orchestration des pipelines ML, même lorsque les modèles eux-mêmes sont écrits en Python.