
使用 Ollama 和 Qwen3 Reranker 模型对文档进行重排序 - 使用 Go 语言
实现 RAG?这里有一些 Go 代码片段 - 2...
由于标准 Ollama 没有直接的重排序 API,
您需要通过生成查询-文档对的嵌入向量并对其进行评分来实现 使用 Qwen3 重排序器在 GO 中进行重排序。
实现 RAG?这里有一些 Go 代码片段 - 2...
由于标准 Ollama 没有直接的重排序 API,
您需要通过生成查询-文档对的嵌入向量并对其进行评分来实现 使用 Qwen3 重排序器在 GO 中进行重排序。
很久以前我训练了一个目标检测AI模型
在一个寒冷的七月冬天……
那是在澳大利亚……
我感到迫切需要训练一个AI模型,用于检测未封口的混凝土钢筋……
qwen3 8b、14b 和 30b,devstral 24b,mistral small 24b
在这项测试中,我正在比较不同LLMs在Ollama上如何将Hugo页面从英语翻译成德语。
我测试的三页内容涉及不同主题,其中包含一些结构良好的markdown内容:标题、列表、表格、链接等。
实现 RAG?这里有一些用 Golang 编写的代码片段。
这个小的 Go代码示例重新排序调用Ollama生成嵌入 用于查询和每个候选文档, 然后按余弦相似度降序排序。
Ollama 现已推出全新强大的 LLM
Qwen3 Embedding 和 Reranker 模型 是 Qwen 系列的最新发布,专为高级文本嵌入、检索和重排序任务而设计。
人工智能需要消耗大量算力……
在现代世界纷乱的环境中,我在这里比较不同显卡的技术规格,这些显卡适用于AI任务
(深度学习,
目标检测
和大语言模型)。
不过它们都非常昂贵。
什么是这种时髦的AI辅助编程?
氛围编程 是一种由人工智能驱动的编程方法,开发者通过自然语言描述所需的功能,从而让人工智能工具自动生成代码。
MM* 工具套件已达到生命周期终点……
我之前使用过 MMDetection (mmengine, mdet, mmcv),用得不少,
但现在看起来它似乎已经退出了舞台。
真可惜,我喜欢它的模型库。
将两个 deepseek-r1 模型与两个基础模型进行比较
DeepSeek’s 第一代推理模型,其性能可与 OpenAI-o1 相媲美,包括基于 Llama 和 Qwen 的 DeepSeek-R1 的六个密集模型。
下一轮LLM测试
不久之前发布了。让我们跟上进度并
测试Mistral Small与其他LLMs的性能表现。
令人惊叹的新AI模型可根据文本生成图像
比较两款自托管AI搜索引擎
美味的食物不仅令人垂涎,也是一道视觉盛宴。
但在这篇文章中,我们将比较两个基于人工智能的搜索系统,Farfalle 和 Perplexica。
本地运行类似 Copilot 的服务?轻松!
这非常令人兴奋!
与其调用 Copilot 或 Perplexity.ai 并告诉全世界你想要什么,
你现在可以在自己的 PC 或笔记本电脑上运行类似的服务!
测试逻辑谬误检测
最近我们看到有几款新的大型语言模型(LLMs)发布。
令人兴奋的时刻。
让我们进行测试,看看它们在检测逻辑谬误时的表现如何。
选择虽不多,但仍有……
当我开始尝试使用大型语言模型(LLMs)时,它们的用户界面正处于积极开发中,而现在其中一些已经非常出色了。